Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Toxicol Appl Pharmacol ; 470: 116546, 2023 07 01.
Article in English | MEDLINE | ID: covidwho-2310299

ABSTRACT

Despite their importance in combating the spread of the COVID-19 pandemic, adverse effects of disinfectants on human health, especially the respiratory system, have been of continuing concern to researchers. Considering that bronchi are the main target of sprayed disinfectants, we here treated the seven major active ingredients in disinfectant products accepted by the US EPA to human bronchial epithelial cells and determined the subtoxic levels. Then, we performed microarray analysis using total RNA obtained at the subtoxic level and designed a network representing disinfectant-induced cellular response using the KEGG pathway analysis technique. Polyhexamethylguanidine phosphate, a lung fibrosis inducer, was used as a reference material to verify the relationship between cell death and pathology. The derived results reveal potential adverse effects along with the need for an effective application strategy for each chemical.


Subject(s)
COVID-19 , Disinfectants , Drug-Related Side Effects and Adverse Reactions , Humans , Disinfectants/toxicity , Transcriptome , Pandemics , Guanidines/toxicity
2.
Environ Sci Technol ; 57(16): 6589-6598, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2292272

ABSTRACT

Mask wearing and bleach disinfectants became commonplace during the COVID-19 pandemic. Bleach generates toxic species including hypochlorous acid (HOCl), chlorine (Cl2), and chloramines. Their reaction with organic species can generate additional toxic compounds. To understand interactions between masks and bleach disinfection, bleach was injected into a ventilated chamber containing a manikin with a breathing system and wearing a surgical or KN95 mask. Concentrations inside the chamber and behind the mask were measured by a chemical ionization mass spectrometer (CIMS) and a Vocus proton transfer reaction mass spectrometer (Vocus PTRMS). HOCl, Cl2, and chloramines were observed during disinfection and concentrations inside the chamber are 2-20 times greater than those behind the mask, driven by losses to the mask surface. After bleach injection, many species decay more slowly behind the mask by a factor of 0.5-0.7 as they desorb or form on the mask. Mass transfer modeling confirms the transition of the mask from a sink during disinfection to a source persisting >4 h after disinfection. Humidifying the mask increases reactive formation of chloramines, likely related to uptake of ammonia and HOCl. These experiments indicate that masks are a source of chemical exposure after cleaning events occur.


Subject(s)
COVID-19 , Disinfectants , Humans , Hypochlorous Acid , Chloramines/chemistry , N95 Respirators , Pandemics , Disinfectants/chemistry , Disinfectants/toxicity , Disinfection , Chlorine/chemistry
3.
Ecotoxicol Environ Saf ; 253: 114678, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2264688

ABSTRACT

The prevalence and spread of multidrug-resistant (MDR) bacteria pose a global challenge to public health. Natural transformation is one of the essential ways for horizontal transfer of antibiotic resistance genes (ARGs). Although disinfectants are frequently used during COVID-19, little is known about whether these disinfectants are associated with the transformation of plasmid-borne ARGs. In our study, we assessed the effect of some disinfectants on bacterial transformation using resistance plasmids as extracellular DNA and E. coli DH5α as the recipient bacteria. The results showed that these disinfectants at environmentally relevant concentrations, including benzalkonium bromide (BB), benzalkonium chloride (BC) and polyhexamethylene guanidine hydrochloride (PHMG), significantly enhanced the transformation of plasmid-encoded ARGs. Furthermore, we investigated the mechanisms underlying the promotive effect of disinfectants on transformation. We revealed that the addition of disinfectants significantly increased the membrane permeability and promoted membrane-related genes expression. Moreover, disinfectants led to the boosted bacterial respiration, ATP production and flagellum motility, as well as increased expression of bacterial secretion system-related genes. Together, our findings shed insights into the spread of ARGs through bacterial transformation and indicate potential risks associated with the widespread use of disinfectants.


Subject(s)
COVID-19 , Disinfectants , Humans , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Disinfectants/toxicity , Drug Resistance, Bacterial/genetics , Plasmids , Genes, Bacterial , Bacteria , Benzalkonium Compounds/pharmacology
4.
J Hazard Mater ; 448: 130800, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2180524

ABSTRACT

Disinfectant abuse poses a risk of bacterial evolution against stresses, especially during the coronavirus disease 2019 (COVID-19) pandemic. However, bacterial phenotypes, such as drug resistance and viability, are hard to access quickly. Here, we reported an allele specific isothermal RNA amplification (termed AlleRNA) assay, using an isothermal RNA amplification technique, i.e., nucleic acid sequence-based amplification (NASBA), integrated the amplification refractory mutation system (ARMS), involving the use of sequence-specific primers to allow the amplification of the targets with complete complementary sequences. AlleRNA assay enables rapid and simultaneous detection of the single nucleotide polymorphism (SNP) (a detection limit, a LOD of 0.5 % SNP) and the viability (a LOD of 80 CFU) of the quinolone resistant Salmonella enterica. With the use of AlleRNA assay, we found that the quinolone resistant S. enterica exhibited higher survival ability during exposure toquaternary ammonium salt, 75 % ethanol and peracetic acid, which might be attributed to the upregulation of stress response-associated genescompared with the susceptible counterparts. Additionally, the AlleRNA assay indicated the potential risk in a high-frequency occurrence of viable but nonculturable (VBNC) quinolone resistant S. enterica induced by disinfectants due to the depression of ATP biosynthesis. The excessive usage of disinfectants during the COVID-19 pandemic should be carefully evaluated due to the latent threat to ecological and human health.


Subject(s)
Disinfectants , Drug Resistance, Bacterial , Quinolones , Humans , Alleles , COVID-19/prevention & control , Disinfectants/therapeutic use , Disinfectants/toxicity , Nucleic Acid Amplification Techniques/methods , Nucleotides , Pandemics/prevention & control , Quinolones/pharmacology , RNA , RNA, Bacterial , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
5.
Water Res ; 223: 119021, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2004603

ABSTRACT

Due to the Covid-19 pandemic, the worldwide biocides application has been increased, which will eventually result in enhanced residuals in treated wastewater. At the same time, chlorine disinfection of secondary effluents and hospital wastewaters has been intensified. With respect to predicted elevated exposure in wastewater, the chlorination kinetics, transformation pathways and toxicity evolution were investigated in this study for two typical isothiazolinone biocides, methyl-isothiazolinone (MIT) and chloro-methyl-isothiazolinone (CMIT). Second-order rate constants of 0.13 M-1·s-1, 1.95 × 105 M-1·s-1 and 5.14 × 105 M-1·s-1 were determined for the reaction of MIT with HOCl, Cl2O and Cl2, respectively, while reactivity of CMIT was around 1-2 orders of magnitude lower. While chlorination of isothiazolinone biocides at pH 7.1 was dominated by Cl2O-oxidation, acidic pH and elevated Cl- concentration favored free active chlorine (FAC) speciation into Cl2 and increased overall isothiazolinone removal. Regardless of the dominant FAC species, the elimination of MIT and CMIT resulted in an immediate loss of acute toxicity under all experimental conditions, which was attributed to a preferential attack at the S-atom resulting in subsequent formation of sulfoxides and sulfones and eventually an S-elimination. However, chlorination of isothiazolinone biocides in secondary effluent only achieved <10% elimination at typical disinfection chlorine exposure 200 mg·L-1·min, but was predicted to be remarkably increased by acidizing solution to pH 5.5. Alternative measures might be needed to minimize the discharge of these toxic chemicals into the aquatic environment.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Chlorine , Disinfectants/toxicity , Halogenation , Halogens , Humans , Hydrogen-Ion Concentration , Kinetics , Pandemics , Sulfones , Sulfoxides , Thiazoles , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods
6.
Toxicol In Vitro ; 84: 105449, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1956358

ABSTRACT

Biocidal disinfectants (BDs) that kill microorganisms or pathogens are widely used in hospitals and other healthcare fields. Recently, the use of BDs has rapidly increased as personal hygiene has become more apparent owing to the pandemic, namely the coronavirus outbreak. Despite frequent exposure to BDs, toxicity data of their potential neurotoxicity (NT) are lacking. In this study, a human-derived SH-SY5Y/astrocyte was used as a co-culture model to evaluate the chemical effects of BDs. Automated high-content screening was used to evaluate the potential NT of BDs through neurite growth analysis. A set of 12 BD substances classified from previous reports were tested. Our study confirms the potential NT of benzalkonium chloride (BKC) and provides the first evidence of the potential NT of poly(hexamethylenebicyanoguanide-hexamethylenediamine) hydrochloride (PHMB). BKC and PHMB showed significant NT at concentrations without cytotoxicity. This test system for analyzing the potential NT of BDs may be useful in early screening studies for NT prior to starting in vivo studies.


Subject(s)
Disinfectants , Neuroblastoma , Neurotoxicity Syndromes , Astrocytes , Benzalkonium Compounds/toxicity , Coculture Techniques , Disinfectants/toxicity , Humans , Neurons
7.
Toxicology ; 477: 153254, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915038

ABSTRACT

MA-T (Matching Transformation System®) is a proprietary chemical mixture for on-demand production of aqueous chlorine dioxide that is used for the treatment of oral malodor. MA-T is also an effective disinfectant against at least 39 pathological microorganisms, including severe acute respiratory syndrome coronavirus 2, and therefore may be useful as a disinfectant mouthwash to prevent the spread of infection. Accidental ingestion is the putative worst hazard scenario associated with mouthwash use; therefore, here we investigated the safety of MA-T ingestion in mice. Mice were provided drinking water containing 0-3000 µg/ml MA-T for 7 days followed by non-spiked drinking water for an additional 14 days. At day 7, mice ingesting 1000 or 3000 µg/ml MA-T showed significantly decreased body weight and significantly increased liver, kidney, and heart tissue injury biomarkers compared with control. However, at 14 days after stopping MA-T ingestion, body weight and tissue injury biomarkers had returned to normal. Histological analysis revealed that MA-T-induced injuries in liver, kidney, spleen, stomach, duodenum, colon, and rectum had also recovered at 14 days after stopping MA-T ingestion; however, mild vascular endothelial injuries remained in heart, jejunum, and ileum in the worst-case scenario. Taken together, MA-T may be potentially safety for further development as a disinfectant mouthwash by risk management, such as placing a caution of the label and adding a distinctive flavor.


Subject(s)
COVID-19 , Disinfectants , Drinking Water , Animals , Body Weight , Disinfectants/toxicity , Eating , Mice , Mouthwashes/toxicity
8.
Environ Int ; 167: 107389, 2022 09.
Article in English | MEDLINE | ID: covidwho-1914334

ABSTRACT

Chlorination disinfection has been widely used to kill the pathogenic microorganisms in wastewater sludge during the special Covid-19 period, but sludge chlorination might cause the generation of harmful disinfection byproducts (DBPs). In this work, the transformation of extracellular polymeric substance (EPS) and mechanisms of Cl-DBPs generation during sludge disinfection by sodium hypochlorite (NaClO) were investigated using multispectral analysis in combination with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The microorganism Escherichia coli (E. coli) was effectively inactivated by active chlorine generated from NaClO. However, a high diversity of Cl-DBPs were produced with the addition of NaClO into sludge, causing the increase of acute toxicity on Q67 luminous bacteria of chlorinated EPS. A variety of N-containing molecular formulas were produced after chlorination, but N-containing DBPs were not detected, which might be the indicative of the dissociation of -NH2 groups after Cl-DBPs generated. Additionally, the release of N-containing compounds was increased in alkaline environment caused by NaClO addition, resulted in more Cl-DBPs generation via nucleophilic substitutions. Whereas, less N-compounds and Cl-DBPs were detected after EPS chlorination under acidic environment, leading to lower cell cytotoxicity. Therefore, N-containing compounds of lignin derivatives in sludge were the major Cl-DBPs precursors, and acidic environment could control the release of N-compounds by eliminating the dissociation of functional groups in lignin derivatives, consequently reducing the generation and cytotoxicity of Cl-DBPs. This study highlights the importance to control the alkalinity of sludge to reduce Cl-DBPs generation prior to chlorination disinfection process, and ensure the safety of subsequential disposal for wastewater sludge.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfectants/toxicity , Disinfection/methods , Escherichia coli , Extracellular Polymeric Substance Matrix/chemistry , Halogenation , Humans , Lignin , Sewage , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods
9.
Sci Total Environ ; 832: 155090, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1773765

ABSTRACT

The usage of quaternary ammonium compounds (QACs) as disinfectants has increased dramatically since the outbreak of COVID-19 pandemic, leading to potentially accelerated emergence of antibiotic resistance. Long-term exposure to subinhibitory level QACs can lead to multidrug resistance, but the contribution of mutagenesis to resistance evolution is obscure. In this study, we subcultured E. coli K-12 under subinhibitory (0.25 × and 0.5 × Minimum Inhibitory Concentration, MIC) or inhibitory (1 × and 2 × MIC) concentrations of benzalkonium chloride (BAC, mono-chained) or didecyldimethylammonium chloride (DDAC, twin-chained) for 60 days. The sensitivity of QAC-adapted cells to five typical antibiotics decreased significantly, and in particular, the MIC of rifampicin increased by 85 times. E. coli adapted faster to BAC but developed 20-167% higher antibiotic resistance with 56% more mutations under DDAC exposure. The broader mutations induced by QACs, including negative regulators (acrR, marR, soxR, and crp), outer membrane proteins and transporters (mipA and sbmA), and RNA polymerase (rpoB and rpoC), potentially contributed to the high multi-drug resistance. After QACs stresses were removed, the phenotypic resistance induced by subinhibitory concentrations of QACs was reversible, whereas that induced by inhibitory concentrations of QACs was irreversible. The different patterns and molecular mechanism of antibiotic resistance induced by BAC and DDAC is informative to estimating the risks of broader QACs present at varied concentrations in the environment.


Subject(s)
COVID-19 , Disinfectants , Disinfectants/toxicity , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Humans , Microbial Sensitivity Tests , Pandemics , Quaternary Ammonium Compounds/pharmacology
10.
Mar Pollut Bull ; 175: 113396, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1693122

ABSTRACT

The increased use of disinfectants due to the spread of the novel coronavirus infection (e.g. COVID-19) has caused burden in the environment but knowledge on its ecotoxicological impact on the estuary environment is limited. Here we report in vivo and molecular endpoints that we used to assess the effects of chloroxylenol (PCMX) and benzalkonium chloride (BAC), which are ingredients in liquid handwash, dish soap products, and sanitizers used by consumers and healthcare workers on the estuarine rotifer Brachionus koreanus. PCMX and BAC significantly affected the life table parameters of B. koreanus. These chemicals modulated the activities of antioxidant enzymes such as superoxide dismutase and catalase and increased reactive oxygen species even at low concentrations. Also, PCMX and BAC caused alterations in the swimming speed and rotation rate of B. koreanus. Furthermore, an RNA-seq-based ingenuity pathway analysis showed that PCMX affected several signaling pathways, allowing us to predict that a low concentration of PCMX will have deleterious effects on B. koreanus. The neurotoxic and mitochondrial dysfunction event scenario induced by PCMX reflects the underlying molecular mechanisms by which PCMX produces outcomes deleterious to aquatic organisms.


Subject(s)
COVID-19 , Disinfectants , Rotifera , Water Pollutants, Chemical , Animals , Disinfectants/toxicity , Humans , Reproduction , SARS-CoV-2 , Swimming , Water Pollutants, Chemical/metabolism
11.
Langmuir ; 38(6): 2162-2173, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1671480

ABSTRACT

According to both the Center for Disease Control and the World Health Organization, contact transmission is the primary transmission route of infectious diseases worldwide. Usually, this is mitigated by a schedule of repeated regular sanitization, yet surfaces are easily re-contaminated in the interim between cleanings. One solution to this problem is to generate self-disinfecting surfaces that can display sustained virucidal/antimicrobial properties against pathogens that settle upon them. Quaternary ammonium organosilicon compounds are ideal candidates to achieve this; cationic surfactants are safe and well-established surface disinfectants, while organosilanes are used broadly to form durable coatings with altered surface properties on many different materials. Despite their potential to circumvent the disadvantages of traditional disinfection methods, extant commercially available quaternary ammonium silanes do not display comparable efficacy to the standard surface disinfectants, nor have their respective coatings been demonstrated to meet the Environmental Protection Agency's guidelines for residual/extended efficacy. Inspired by the powerful surface activity of double-headed "gemini" surfactants, here, we present gemini-diquaternary silanes (GQs) with robust residual germicidal efficacy on various surfaces by incorporating a second cationic "head" to the structure of a conventional monoquaternary ammonium silane (MQ). Aqueous solutions of GQs were tested in suspension- and surface-antimicrobial assays against an array of pathogens, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). GQ performance was benchmarked against the common disinfectants, ethanol, hydrogen peroxide, hypochlorite, as well as MQ. Solutions of GQs were efficacious when used for immediate disinfection (>106-fold reduction in 15 s). Additionally, GQs were demonstrated to impart durable self-disinfecting properties to a variety of porous and nonporous surfaces, effective after repeated cycles of abrasion and repeated contaminations, and with superior coating ability and activity (>108 higher activity) than that of MQs. GQs as surface treatments show great promise to overcome the limitations of traditional disinfectants in preventing the spread of infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , Disinfectants , Disinfectants/toxicity , Disinfection/methods , Humans , SARS-CoV-2 , United States
12.
Int J Environ Res Public Health ; 19(1)2021 12 23.
Article in English | MEDLINE | ID: covidwho-1580845

ABSTRACT

The development and distribution of vaccines and treatments as well as the use of disinfectants and hand sanitizers to cope with coronavirus disease 2019 (COVID-19) infection has increased rapidly. As the use of disinfectants and hand sanitizers increased, the number of unintended exposures to these substances also increased. A total of 8016 cases of toxic exposure to disinfectants and hand sanitizers were reported to the American Association of Poison Control Centers (AAPCC) from 1 January 2017 to 30 May 2021. The cases have been characterized by substance, sex, patient age, exposure reason and site, treatments received, and outcomes. The number of exposures correlates closely to the rise of COVID-19 cases, rising significantly in March 2020. About half of the total cases involved children less than 10 years old and 97% of those exposures per year were unintentional. In addition, the most common exposure site was the patient's own residence. Over-exposure to disinfectants and hand sanitizers can cause symptoms such as burning and irritation of the eyes, nose, and throat, coughing, chest tightness, headache, choking, and, in severe cases, death.


Subject(s)
COVID-19 , Disinfectants , Hand Sanitizers , Child , Disinfectants/toxicity , Humans , Poison Control Centers , SARS-CoV-2 , United States
14.
J Hazard Mater ; 421: 126679, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1313241

ABSTRACT

Intensive disinfection of wastewater during the COVID-19 pandemic might elevate the generation of toxic disinfection byproducts (DBPs), which has triggered global concerns about their ecological risks to natural aquatic ecosystems. In this study, the toxicity of 17 DBPs typically present in wastewater effluents on three representative microalgae, including Scenedesmus sp. (Chlorophyta), Microcystis aeruginosa (Cyanophyta), and Cyclotella sp. (Bacillariophyta) was investigated. The sensitivities of the three microalgae to DBPs varied greatly from species to species, indicating that DBPs may change the structure of phytoplankton communities. Later, co-cultures of these phytoplankton groups as a proxy of ecological freshwater scenario were conducted to explore the impacts of DBPs on phytoplankton community succession. M. aeruginosa became surprisingly dominant in co-cultures, representing over 50% after dosing with monochloroacetic acid (MCAA, 0.1-10 mg/L). The highest proportion of M. aeruginosa was 70.3% when exposed to 2 mg/L MCAA. Although Scenedesmus sp. dominated in monochloroacetonitrile (MCAN) exposure, M. aeruginosa accounted for no less than 30% even at 40 mg/L MCAN. In this study, DBPs disrupted the original inter-algal relationship in favor of M. aeruginosa, suggesting that DBPs may contribute to the outbreak of cyanobacterial blooms in aquatic ecosystems.


Subject(s)
Disinfectants/toxicity , Phytoplankton/drug effects , Scenedesmus , Coculture Techniques , Disinfection , Ecosystem , Fresh Water , Scenedesmus/drug effects
15.
Environ Sci Technol ; 55(15): 10534-10541, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1270648

ABSTRACT

Intensified disinfection of wastewater during the COVID-19 pandemic increased the release of toxic disinfection by-products (DBPs). However, studies relating to the ecological impacts of DBPs on the aquatic environment remain insufficient. In this study, we comparatively investigated the toxicities and ecological risks of 17 typical, halogenated DBPs to three trophic levels of organisms in the freshwater ecosystem, including phytoplankton (Scenedesmus sp.), zooplankton (Daphnia magna), and fish (Danio rerio). Toxicity of DBPs was found to be species-specific: Scenedesmus sp. was the most sensitive to haloacetic acids, while D. magna was the most sensitive to haloacetonitriles and trihalomethanes. Specific to each DBP, toxicities were also related to their classes and substituted halogen atoms. Damage to photosystems and oxidative stress served as the potential mechanisms for DBPs toxicity to microalgae. The different sensitivities to DBPs indicate that a battery of bioassays with organisms at different trophic levels is necessary to determine the ecotoxicity of DBPs. Furthermore, the ecological risks of DBPs were assessed by calculating the risk quotients (RQs) based on toxicity data from multiple bioassays. The cumulative RQs of DBPs to all the organisms were greater than 1.0, indicating high ecological risks of DBPs in wastewater effluents.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Animals , Aquatic Organisms , Disinfectants/toxicity , Disinfection , Ecosystem , Halogenation , Humans , Pandemics , SARS-CoV-2 , Trihalomethanes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
16.
Int J Toxicol ; 40(4): 388-394, 2021.
Article in English | MEDLINE | ID: covidwho-1247535

ABSTRACT

BACKGROUND: The sudden emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and scarcity of the accurate information especially in the initial phase of the struggle presented a series of challenges to health systems. OBJECTIVE: To evaluate the changes in poisoning cases regarding distribution, types, and characteristics for better framing and planning of the role of our field in responding to pandemics. METHODS: Study of telephone consultation calls and toxicology analysis records of poisoning cases referred to the Dammam Poison Control Center in Saudi Arabia during the first half of 2020. Their distribution according to frequencies, causes, and other characteristics was compared to the first half of 2019. RESULTS: Analysis of telephone consultation calls revealed that the proportion of exposure to disinfectants and hand sanitizers during first half of 2020 increased to 20.4% (n = 496) and 3.4% (n = 83), respectively, compared to 9.8% (n = 215) and 0.4% (n = 10) for surface disinfectants and hand sanitizers, respectively, during the first half of 2019. In 2020, exposure to disinfectants and hand sanitizers dominated in preschool children (0-5 years). The total number of cases suspected for drugs/drugs of abuse overdose during the first 6 months of 2020 (n = 783) showed a significant decrease (P < 0.001) compared to the first 6 months of 2019 (n = 1086). CONCLUSION: The increased availability and use of disinfectants and sanitizers significantly increased the risk of poisoning, especially in preschool-aged children. Public health education for prevention of such home exposures is urgently needed to avoid unnecessary emergency medical system use in such critical time.


Subject(s)
COVID-19/epidemiology , Disinfectants/toxicity , Hand Sanitizers/toxicity , Poison Control Centers/statistics & numerical data , Referral and Consultation , SARS-CoV-2 , Child, Preschool , Humans , Saudi Arabia/epidemiology , Time Factors
17.
Environ Pollut ; 283: 117074, 2021 Aug 15.
Article in English | MEDLINE | ID: covidwho-1163728

ABSTRACT

During the current pandemic, chemical disinfectants are ubiquitously and routinely used in community environments, especially on common touch surfaces in public settings, as a means of controlling the virus spread. An underappreciated risk in current regulatory guidelines and scholarly discussions, however, is that the persisting input of chemical disinfectants can exacerbate the growth of biocide-tolerant and antibiotic-resistant bacteria on those surfaces and allow their direct transfers to humans. For COVID-19, the most commonly used disinfecting agents are quaternary ammonium compounds, hydrogen peroxide, sodium hypochlorite, and ethanol, which account for two-thirds of the active ingredients in current EPA-approved disinfectant products for the novel coronavirus. Tolerance to each of these compounds, which can be either intrinsic or acquired, has been observed on various bacterial pathogens. Of those, mutations and horizontal gene transfer, upregulation of efflux pumps, membrane alteration, and biofilm formation are the common mechanisms conferring biocide tolerance in bacteria. Further, the linkage between disinfectant use and antibiotic resistance was suggested in laboratory and real-life settings. Evidence showed that substantial bacterial transfers to hands could effectuate from short contacts with surrounding surfaces and further from fingers to lips. While current literature on disinfectant-induced antimicrobial resistance predominantly focuses on municipal wastes and the natural environments, in reality the community and public settings are most severely impacted by intensive and regular chemical disinfecting during COVID-19 and, due to their proximity to humans, biocide-tolerant and antibiotic-resistant bacteria emerged in these environments may pose risks of direct transfers to humans, particularly in densely populated urban communities. Here we highlight these risk factors by reviewing the most pertinent and up-to-date evidence, and provide several feasible strategies to mitigate these risks in the scenario of a prolonging pandemic.


Subject(s)
COVID-19 , Disinfectants , Anti-Bacterial Agents/pharmacology , Disinfectants/toxicity , Drug Resistance, Microbial , Humans , Microbial Sensitivity Tests , SARS-CoV-2
18.
Sci Total Environ ; 759: 144289, 2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-969515

ABSTRACT

Due to the wide range of viability on inanimate surfaces and fomite transmission of SARS-CoV-2, hydrogen peroxide (0.5%, HP) and hypochlorite-based (0.1%, HC) disinfectants (common biocides) are proposed by World Health Organization to mitigate the spread of this virus in healthcare settings. They can be adopted and applied to outdoor environments. However, many studies have shown that these two disinfectants are toxic to fishes and aquatic non-target organisms (primary producers and macroinvertebrates). The global market of these disinfectants will increase in coming years due to COVID-19. Therefore, it is urgent to highlight the toxicities of these disinfectants. The main findings of this article allow the community to develop a new strategy to protect the environment against the hazardous effects of disinfectants. Therefore, we use the "toxicity calculated ratio (TC ratio)" that refers to the fold increase or decrease in the toxicities reported in the literature (NOEC, LOEC, LC50 and EC50) relative to the WHO-recommended dose of HP and HC. The calculated TC ratios are valuable for policy makers to formulate the regulations to prevent disinfectant exposure in the environment. Our results were collected via PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) guidelines and showed that the TC ratios are from the single digits to several thousand-fold lower than the HP and HC recommended dose, which means these disinfectants are potentially dangerous to non-target organisms. The results also showed that HP and HC are toxic to the growth and reproduction of non-target organisms. Therefore, we recommend policymakers formulate protocols for critical assessment and monitoring of the environment-especially on non-target organisms in water bodies located in and around disinfectant-exposed areas to safeguard the environment in the future.


Subject(s)
COVID-19 , Disinfectants , Disinfectants/toxicity , Disinfection , Humans , Hydrogen Peroxide , SARS-CoV-2
19.
Arh Hig Rada Toksikol ; 71(3): 261-264, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-874402

ABSTRACT

All COVID-19 prevention strategies include regular use of surface disinfectants and hand sanitisers. As these measures took hold in Croatia, the Croatian Poison Control Centre started receiving phone calls from the general public and healthcare workers, which prompted us to investigate whether the risk of suspected/symptomatic poisonings with disinfectants and sanitisers really increased. To that end we compared their frequency and characteristics in the first half of 2019 and 2020. Cases of exposures to disinfectants doubled in the first half of 2020 (41 vs 21 cases in 2019), and exposure to sanitisers increased about nine times (46 vs 5 cases in 2019). In 2020, the most common ingredients of disinfectants and sanitisers involved in poisoning incidents were hypochlorite/glutaraldehyde, and ethanol/isopropyl alcohol, respectively. Exposures to disinfectants were recorded mostly in adults (56 %) as accidental (78 %) through ingestion or inhalation (86 %). Fortunately, most callers were asymptomatic (people called for advice because they were concerned), but nearly half reported mild gastrointestinal or respiratory irritation, and in one case severe symptoms were reported (gastrointestinal corrosive injury). Reports of exposure to hand sanitisers highlighted preschool children as the most vulnerable group. Accidental exposure through ingestion dominated, but, again, only mild symptoms (gastrointestinal or eye irritation) developed in one third of the cases. These preliminary findings, however limited, confirm that increased availability and use of disinfectants and sanitisers significantly increased the risk of poisoning, particularly in preschool children through accidental ingestion of hand sanitisers. We therefore believe that epidemiological recommendations for COVID-19 prevention should include warnings informing the general public of the risks of poisoning with surface and hand disinfectants in particular.


Subject(s)
2-Propanol/toxicity , Coronavirus Infections/prevention & control , Disinfectants/toxicity , Ethanol/toxicity , Glutaral/toxicity , Hand Sanitizers/toxicity , Hypochlorous Acid/toxicity , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus Infections/epidemiology , Croatia/epidemiology , Drug-Related Side Effects and Adverse Reactions/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Young Adult
20.
Public Health Rep ; 136(1): 27-31, 2021.
Article in English | MEDLINE | ID: covidwho-873742

ABSTRACT

An increased use of disinfectants during the coronavirus disease 2019 (COVID-19) pandemic may increase the number of adverse health effects among people who apply them or among those who are in the area being disinfected. For the 3-month period from January 1 to March 30, 2020, the number of calls about exposure to cleaners and disinfectants made to US poison centers in all states increased 20.4%, and the number of calls about exposure to disinfectants increased 16.4%. We examined calls about cleaners and disinfectants to the Michigan Poison Center (MiPC) since the onset of the COVID-19 pandemic. We compared all calls related to exposure to cleaners or disinfectants, calls with symptoms, and calls in which a health care provider was seen during the first quarters of 2019 and 2020 and in relationship to key COVID-19 dates. From 2019 to 2020, the number of all disinfectant calls increased by 42.8%, the number of calls with symptoms increased by 57.3%, the average number of calls per day doubled after the first Michigan COVID-19 case, from 4.8 to 9.0, and the proportion of calls about disinfectants among all exposure calls to the MiPC increased from 3.5% to 5.0% (P < .001). Calls for exposure to cleaners did not increase significantly. Exposure occurred at home for 94.8%97.1% of calls, and ingestion was the exposure route for 59.7% of calls. Information about the adverse health effects of disinfectants and ways to minimize exposure should be included in COVID-19 pandemic educational materials.


Subject(s)
COVID-19/epidemiology , Disinfectants/toxicity , Poison Control Centers/statistics & numerical data , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Michigan/epidemiology , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL